
A. Gelbukh and A.F. Kuri Morales (Eds.): MICAI 2007, LNAI 4827, pp. 215–224, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Rule-Based System for Assessing Consistency
Between UML Models

Carlos Mario Zapata1, Guillermo González1, and Alexander Gelbukh2

1 Escuela de Sistemas, Universidad Nacional de Colombia,
Carrera 80 N° 65-23, Bloque M8. Medellín, Colombia

Tel.: 4255350
{cmzapata,ggonzal}@unalmed.edu.co

2 Computing Research Center (CIC), National Polytechnic Institute (IPN),
Col. Zacatenco, 07738, DF, Mexico

www.Gelbukh.com

Abstract. The main goal of requirements specification is the transformation of
a “rough draft” of stakeholder needs and expectations into a semi-formal
specification, represented by several diagrams, commonly UML diagrams.
These diagrams must be consistent with each other, but consistency among
different UML diagrams is not defined by the UML specification, and the
research about inter-model consistency is still immature. We propose, in this
paper, a rule-based system to detect consistency problems among UML
diagrams. In order to complete this task, we have defined a set of rules in OCL,
and then we use a novel approach for implementing the system by means of
Xquery and Xpath languages. The use of these languages helps the rule-based
system to interact with traditional CASE tools.

1 Introduction

The initial specification of a software application is often informal and possibly
vague, and it is usually a “rough draft” of the final specification [1]. This commonly
incomplete and inconsistent “rough draft” must be translated to a correct requirement
specification, and then presented to the stakeholders for their validation. One of the
critical tasks in requirements engineering tries to assure the quality of the step-by-step
specification, in order to find consistency, correctness, and completeness mistakes as
soon as possible in the software lifecycle [2]. The Unified Modeling Language
(UML) is often used to make such specification [3].

Consistency has been, particularly, one of the most important concerns of software
development process, and there are lots of works about it. However, there are still
problems to be solved:

– UML superstructure [3] and other works [4] only define intra-model consistency.
The inter-model consistency is not formally specified [5] and it is not supported
by the common CASE (Computer-Aided Software Engineering) tools.

– Consistency checking is carried out automatically among some of the models and
the executable code [6]. Executable code is the final step in the software

216 C.M. Zapata, G. González, and A. Gelbukh

development lifecycle, and we need to perform consistency checking in the
previous stages (definition, analysis, and design).

– Several works [7, 8, 9, and 10] establish transformation processes instead of
consistency checking processes. We need to specify the way consistency
checking is performed among diagrams, and transformation processes do not help
in such task.

– Some works [4 and 10] are done in a semi-automated way; if the analyst must
participate in the consistency checking process, this process will probably be
human-error-prone.

– There is one approach to specify consistency checking in a semi-formal way [11].
Lack of formalism can cause ambiguity problems in the final specification of a
software application.

The reviewed works use rules in order to define the consistency checking process.
In essence, rules are the main elements of the rule-based systems, a contribution of
the Artificial Intelligence (AI) to the solution of this kind of problems. Ligêza [12]
defined a set of principles for designing rule-based systems, and one of the most
important is functional capability, a principle linked to the functionality of the
language in which the rule-based system is programmed. In reference to the problem
of consistency checking, we need to guarantee that the models, commonly made in
CASE tools, can be accessed by the rule-based system in order to check consistency
among them. Because of this, we need to introduce XML (Extended Markup
Language) capabilities in the rule-based system.

In this paper we propose a method for verifying consistency between UML
diagrams by means of a novel approach to rule-based systems. The rules of the system
are defined in OCL [3], a formal language for constraint definition, and then they are
programmed in Xpath and Xquery, special languages for selecting and processing
parts of XML code. For sake of exemplification, the rules are related to consistency
between class and use case diagrams, two of the most important diagrams of UML.

The structure of this paper is as follows: in Section 2 we review specialized
literature about consistency checking. Section 3 describes Xpath and Xquery and
justifies the use of these languages in the rule-based system. Section 4 presents the
rule-based system for consistency checking. Finally, in Section 5 the conclusions and
future work are given.

2 Literature Overview on Consistency Checking in UML
Diagrams

The main source of consistency rules for UML diagrams is the UML superstructure,
emitted by the OMG [3]. This document includes some intra-model consistency rules
in OCL (Object Constraint Language), a formal language for constraint specification;
some of these rules are implemented in some of the conventional CASE tools.
However, inter-model consistency rules are not defined. Some works have been
developed [4–11] for dealing with the problem of consistency between different kinds
of models.

Dan Chiorean [4] used OCL [3] for checking the intra-model consistency in UML
diagrams, with the help of the CASE tool OCLE. This tool is compatible with XMI

 A Rule-Based System for Assessing Consistency Between UML Models 217

[13], and it can process UML models generated by many of the available CASE tools
(Together, Rational Rose, MagicDraw, Poseidon, ArgoUML, etc.). A software
specification is integrated by many diagrams, and intra-model consistency checking is
only a part of the job; in order to guarantee the quality of a complete specification, we
need to check consistency between several UML diagrams.

Xlinkit [6] is an environment for consistency checking of heterogeneous
distributed documents. This approach uses several languages like XML, Xpath, Xlink,
and DOM [13], and is conformed by a first-order-logic-based language to express
constraints among documents, a document management system, and an engine for
checking the constraints against the documents. In the runtime, Xlinkit applies Xpath
expressions in order to review all the documents of the collection, and then it
constructs a list of nodes to be checked. The documents can be referred to UML class
diagrams or to source code of the software application. However, such comparison
does not make sense; the source code is available in the implementation stage of
software lifecycle, and we need to discover potential mistakes in the specification in
previous stages.

Four parallel works: Kösters, Pagel and Winter [7], Liu et al. [8], Shishkov et al. [9],
and Buhr [10], use case diagram to derive the class diagram. Transformation between
diagrams is a way to guarantee the consistency between diagrams, but only in the case
that we can completely generate the second diagram from the first. This is not the
common case of software specification, where every diagram contains both proper
information and shared information. In other words, by means of the transformation
process, we only can generate the shared information of the second diagram, and the
independent information must be completed in a manual process.

Glinz [5] defines a manual method for assessing consistency between class and use
case diagrams, and he uses as a starting point a textual specification of the use cases
in a special format. In this method, the presence of the analyst is highly required in
the consistency checking process among the two diagrams, and this situation makes it
difficult for the partial or total automation of the process.

Sunetnanta and Finkelstein [11] present an approach for checking the inter-model
consistency, and they based this approach on the UML diagram conversion into
conceptual graphs, and on the definition of consistency rules referred to the same
graphs. The conceptual graphs can not be considered as a formal approach for this
kind of specification elaboration, but a semi-formal approach. While the approaches
have still low formal level, there is a high probability of ambiguity problems in the
consistency checking process.

3 Xpath, Xquery, and Rule-Based Systems

XML is an extremely versatile markup language, capable of labeling the information
content of diverse data sources, including structured and semi-structured documents,
relational databases, and object repositories. Throughout the last few years, the use of
XML [14] has grown, and this language has become a standard language for
communication purposes among applications. The reasons why the use of this
language has increased are the strange mix of suitability and standardization that it
can achieve. Also, XML has an important suite of standard languages surrounding it,

218 C.M. Zapata, G. González, and A. Gelbukh

and this suite gives it the power to interact among different applications. Two of the
most important languages of this suite are Xquery and Xpath [13].

A query language that uses the structure of XML can intelligently express queries
across all these kinds of data, whether physically stored in XML, or viewed as XML
via middleware. Query languages have been traditionally designed for specific kinds
of data. Existing proposals for XML query languages are robust for particular types of
data sources, but weak for other types. The Xquery specification has been designed to
be broadly applicable across all types of XML data sources. Xquery is a functional
language to acquire data in multiple document formats (including XML documents)
and then to produce XML-based results [13]. Xquery extensively uses the so-called
Xpath, an expression language to select parts of an XML document by means of a
matching process [13]. Both Xquery and Xpath languages are used to retrieve
information pieces, especially from XML documents; for this reason, these languages
have been commonly used for processing information in the semantic web.

The growing use of XML-based languages has motivated the extension of some of
their capabilities, and rule-based systems have been employed for this purpose,
especially in the fields of query optimization [15, 16, and 17] and logic programming
[18]. By contrast, Xquery and Xpath can be used to support the elaboration of rule-
based systems, as suggested by Eguchi and Leff [19], who discussed the use of XML-
based languages to create artificial intelligence applications in the legal environment.
Following the same trend, Schaffert [20] proposed a special rule-based language
called Xcerpt, which is suitable to create rule-based systems from web documents.

The UML superstructure [3] suggests XMI (XML Metadata Interchange) as a
standard language to share information among UML-based applications. Most of the
UML-based CASE tools are capable to export diagrams in XMI format, for the
purpose of communication among them. In order to create a rule-based system to
check consistency between UML diagrams, the previous approaches do not use XMI;
only Xlinkit [6] uses a sort of XML-based environment, but the goal of this
environment is the comparison of UML diagrams against source code. Due to the fact
that Xcerpt [20] is suitable for the semantic web, it does not use XMI as a way to
interchange information. By this reason, in the next section we propose the use of
Xquery and Xpath for creating a rule-based system to check consistency between two
of the most common UML diagrams: class and use case diagrams.

4 A Rule-Based System for Consistency Checking Between
UML Models

The construction of a rule-based system to define the consistency rules between ML
class and use case diagrams requires the definition of some principles:

– Every class is distinguished by its name, by a collection of properties, and by a
collection of operations offered by the class.

– The use case model has actors, which represents the roles which different users
can play, and use cases, which represents the actions performed by the actors in
the future software application.

 A Rule-Based System for Assessing Consistency Between UML Models 219

Due to the fact that the UML superstructure [3] only defined intra-model rules, a
heuristic analysis of the experience of software analysts was performed to define a set
of consistency rules between class and use case diagrams. In this section, we present
and specify two of such rules; the rules are presented in natural language, OCL, and
Xquery-Xpath source code.

Rule 1. The name of a use case must include a verb and a noun; the noun should
correspond to the name of one class in the class diagram. In other words, for each use
case U in the class diagram, there should be a class C belonging to the class diagram,
so that U.name equals C.name. Figure 1 depicts the graphical representation of this
rule.

The OCL expression that represents this rule is shown in Figure 1.

Fig. 1. Graphical expression of Rule 1

Classifier
self.UseCase->exists(us: Usecase, c: Class, x: Integer, y: Integer | y > x

and us.name.toUpper.substring(x,y)=c.name.toUpper)

The Xquery-Xpath expression that represents this rule is:

<rule1>{
 for $i in 1 to count($class)
 for$j in 1 to count($usecase)
 return

if (contains(upper-case($usecase[position()=$j]/@name), upper-
case($class[position()=$i]/@name))) then

("
The class ", upper-
case($clase[position()=$i]/@name), " exists in the use case
", upper-case($casouso[position()=$j]/@name), "")

220 C.M. Zapata, G. González, and A. Gelbukh

else
("
The class ", upper-case($clase[position()=$i]/@name),
" not exists in the use case ", upper-
case($casouso[position()=$j]/@name), "")

}</rule1>

Rule 2. The name of a use case must include a verb and a noun; the verb should
correspond to an operation of a class in the class diagram that was identified in rule 1.
In other words, for each use case U there should be a class C that contains an
operation Operationx so that U.name contains C.Operationx. Figure 2 depicts the
graphical representation of this rule.

The OCL expression that represents this rule is shown in Figure 2.

Fig. 2. Graphical expression of Rule 2

Classifier
self.UseCase->exists(us: Usecase, c: Class, x: Integer, y: Integer | y > x

and us.name.toUpper.substring(x,y)=c.operation.toUpper)

The Xquery-Xpath expression that represents this rule is:

<rule2>{
 for $i in 1 to count($operation)
 for$j in 1 to count($usecase)
 return

if (contains(upper-case($usecase[position()=$j]/@name), upper-
case($operation[position()=$i]/@name))) then
("
The operation ",upper-
case($operation[position()=$i]/@name), " exists in the use case
",upper-case($usecase[position()=$j]/@name), "")

 A Rule-Based System for Assessing Consistency Between UML Models 221

else
("
The operation ",upper-
case($operation[position()=$i]/@name), " not exists in the use
case ",upper-case($usecase[position()=$j]/@name), "")

}</rule2>

The complete set of rules was programmed in a rule-based system for checking

consistency between class and use case diagrams. The inputs of the system are the
two diagrams in XMI format [3]; ArgoUML® was the CASE tool selected to make
these diagrams, and then to export them to XMI. The rule-based system was
programmed in Java®, and uses Xquery and Xpath languages by means of an API
(Application Program Interface) named Saxon for the validation of the rules. The rule-
based system assesses the diagrams and creates a report to inform if the rules are
followed (correct state), or are not (error state). Also, the rule-based system informs if
there is an error of synonyms; to achieve this goal, the system uses a word list, which
includes possible synonyms of every word. When the system detects two synonyms
used in the same diagram, a warning message is presented.

If we apply the described process to the diagrams of Figure 1, after we introduce
the XMI file resulting from ArgoUML®, in the rule-based system we achieve a XML
file with the information of the recognized class diagram (see, for example, the class
“BILL” in Figure 3; all of the classes will exhibit the same appearance), use case
diagram (see Figure 4), and the results of consistency checking process (see Figure 5).

Fig. 3. XML file corresponding to the class “BILL”

Fig. 4. XML file corresponding to the use case diagram

222 C.M. Zapata, G. González, and A. Gelbukh

Fig. 5. XML file corresponding to the consistency checking process

5 Conclusions and Future Work

A novel approach to use Xquery and Xpath in the development of a rule-based system
was presented in this paper. The main goal of the system is the assessment of
consistency rules between UML class and use case diagrams.

This work makes contributions to Requirements Engineering and Artificial
Intelligence. In the first case, the problem of definition of inter-model rules for
consistency checking was dealt with by means of a formal specification of
consistency rules between the use case and class diagrams in OCL. With the
integration of the OCL in the rules definition, we assure that there is a formal way to
check them, in order to avoid ambiguities and to guarantee well formed models. As a
future work, a possible integration with the well-formedness rules of the UML
specification can be defined. Related to Artificial Intelligence, this work has showed a
novel way to incorporate XML-based languages in the development of rule-based
systems. XML technology facilitates the access to several sources of information (for
example, the semantic web and, in this particular situation, to the diagrams made by

 A Rule-Based System for Assessing Consistency Between UML Models 223

means of CASE tools) and, in conjunction with the Artificial Intelligence theory,
becomes a better way to develop rule-based systems.

Additional future work must be directed to extend the rule-based system to other
UML diagrams (for example activity and sequence diagrams) and to other
requirements engineering diagrams (for example goal diagram and process diagram).
Also, we need to examine languages like Xcerpt, for assessing the suitability of these
approaches to rule-based systems, with the possibility of accessing the diagrams made
by means of many CASE tools.

Acknowledgements. The work was done with partial support of Mexican Government
(SNI, CONACYT, COFAA-IPN) to the third author.

References

1. Jackson, M.: Software Requirements & Specifications: a lexicon of practice, principles and
prejudices. Addison Wesley, Great Britain (1995)

2. Zowghi, D., Gervasi, V.: The Three Cs of requirements: consistency, completeness, and
correctness. In: International Workshop on Requirements Engineering: Foundations for
Software Quality, Essen, pp. 155–164. Essener Informatik Beitiage, Germany (2002)

3. OMG – Object Management Group. http://www.omg.org
4. Chiorean, D., Pasca, M., Carcu, A., Botiza, C., Moldovan, S.: Ensuring UML models

consistency using the OCL Environment. In: Sixth International Conference on the Unified
Modelling Language - the Language and its applications, San Francisco (2003)

5. Glinz, M.: A lightweight approach to consistency of Scenarios and Class Models. In: En:
Fourth International Conference on Requirements Engineering, Illinois, USA, June 10-23
(2000)

6. Gryce, C., Finkelstein, A., Nentwich, C.: Lightweight Checking for UML Based Software
Development. In: Workshop on Consistency Problems in UML-based Software
Development. Dresden, Germany (2002)

7. Kösters, G., Pagel, B.-U., Winter, M.: Coupling Use Cases and Class Models. In: BCS
FACS/EROS Workshop on Making Object-oriented Methods more Rigorous, London
(1997)

8. Liu, D., Subramaniam, K., Far, B.H., Eberlein, A.: Automating transition from use-cases to
class model. In: IEEE CCECE 2003. Canadian Conference on Electrical and Computer
Engineering, vol. 2, pp. 831–834 (2003)

9. Shishkov, B., Xie, Z., Lui, K., Dietz, J.: Using norm analysis to derive use case from
business processes. In: 5th Workshop on Organizations semiotics, Delft the Netherlands,
June 14-15, 2002 (2002)

10. Buhr, R.J.A.: Use Case Maps as Architectural Entities for Complex Systems. IEEE
Transactions on Software Engineering 24(12), 1131–1155 (1998)

11. Sunetnanta, T., Finkelstein, A.y.: Automated Consistency Checking for Multiperspective
Software Specifications. In: Proceedings of the 26th Australasian computer science
conference, vol. 16, pp. 291–300 (2003)

12. Ligêza, A.: Logical Foundations of Rule-Based Systems. Studies in Computational
Intelligence (SCI) 11, 191–198 (2006)

13. W3C – World Wide Web Consortium. http://www.w3.org
14. XML – Extensible Markup Language. http://www.w3.org/XML

224 C.M. Zapata, G. González, and A. Gelbukh

15. Travers, N., Dang, T.: An Extensible Rule Transformation Model for XQuery
Optimization. In: ICEIS. International Conference on Enterprise Information Systems,
INSTICC, Madeira (2007)

16. Pal, S., Istvan, C., Seeliger, O., Rys, M., Schaller, G., Yu, W., Tomic, D., Baras, A., Berg,
B., Churin, D., Kogan, E.: XQuery implementation in a relational database system. In:
Proceedings of the 31st international conference on Very large data bases, pp. 1175–1186.
Trondheim, Norway (2005)

17. Che, D., Aberer, K., Özsu, M.: Query optimization in XML structured-document
databases. The VLDB Journal 15(3), 263–289 (2006)

18. Almendros, J., Becerra, A., Enciso, F.: Magic Sets for the XPath Language. Journal of
Universal Computer Science 12(11), 1651–1678 (2006)

19. Eguchi, G., Leff, L.: Rule-based XML: Rules about XML in XML To Support Litigation
Regarding Contracts. Artificial Intelligence and Law 10, 283–294 (2002)

20. Schaffert, S., Xcerpt, A.: Rule-Based Query and Transformation Language for the Web.
PhD thesis, University of Munich (2004)

	A Rule-Based System for Assessing Consistency Between UML Models
	Introduction
	Literature Overview on Consistency Checking in UML Diagrams
	Xpath, Xquery, and Rule-Based Systems
	A Rule-Based System for Consistency Checking Between UML Models
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

